Q- Two blocks of mass $m_{1}=4 \mathrm{~kg}$ and $m_{2}=3 \mathrm{~kg}$ are attached to the ends of a string and passes over a pulley of mass $\mathrm{M}=2 \mathrm{~kg}$ and radius 20 cm . Find angular acceleration of the pulley considering it as a uniform disk.

The system can be drawn as in the figure.
Let the magnitude of acceleration of m_{1} and m_{2} is a and the angular acceleration of the pulley is α.

The equations of motion are given by

$$
\begin{align*}
& m_{1} a=T_{1}-m_{1} g \tag{1}\\
& m_{2} a=m_{2} g-T_{2} \tag{2}
\end{align*}
$$

And

$$
\begin{array}{ll}
& T_{2} R-T_{1} R=I \alpha \\
\text { Or } & T_{2}-T_{1}=\frac{I \alpha}{R} \tag{3}
\end{array}
$$

Here I is the moment of inertia of the pulley.
As the pulley is having mass M and the radius R, considering it as a uniform disk its moment of inertia is given by

$$
\mathrm{I}=\mathrm{MR}^{2} / 2
$$

And as the angular acceleration is related to the linear acceleration by the relation

$$
\alpha=a / R
$$

Substituting these in equation (3) it becomes

$$
\begin{array}{ll}
\text { Or } & T_{2}-T_{1}=\frac{1}{2} M R^{2} \frac{a}{R^{2}} \\
\text { Or } & T_{2}-T_{1}=\frac{1}{2} M a \tag{3}
\end{array}
$$

Adding the three equations we have

$$
\begin{aligned}
& \quad m_{2} g-m_{1} g=\left(m_{1}+m_{2}+\frac{M}{2}\right) a \\
& \text { Or } \quad a=\frac{\left(m_{2}-m_{1}\right) g}{\left(m_{1}+m_{2}+\frac{M}{2}\right)}
\end{aligned}
$$

Substituting the values, the magnitude of the acceleration a of m_{1} and m_{2} is given by

$$
a=\frac{(3-4) * 9.8}{(4+3+1)}=-1.225 \mathrm{~m} / \mathrm{s}^{2}
$$

And $\alpha=\frac{a}{R}=\frac{-1.225}{0.2 m}=-6.125 \mathrm{rad} / \mathrm{s}^{2}$
Negative sign shows that the system will move in clockwise direction.

