Q- A heavy piece of hanging sculpture is suspended by a 90 cm long, 5.0 g steel wire. When the wind blows hard, the wire hums at its fundamental frequency of 80 Hz . What is the mass of the sculpture?

The frequency f, wave velocity c and the wavelength λ for a wave are related as

$$
\begin{equation*}
c=f * \lambda \tag{1}
\end{equation*}
$$

The velocity of a transverse wave on a stretched string is given by

$$
\begin{equation*}
c=\sqrt{\frac{T}{\mu}} \tag{2}
\end{equation*}
$$

Here T is the tension in the string and μ is the mass per unit length of the string.
Substituting value of c from equation 1 in equation 2 we get

$$
\begin{align*}
f \lambda & =\sqrt{\frac{T}{\mu}} \\
\text { Or } \quad f & =\frac{1}{\lambda} \sqrt{\frac{T}{\mu}} \tag{3}
\end{align*}
$$

Now when a stretched wire oscillates with fundamental frequency, only one antinode in the middle is formed and the length of the two nodes formed at the ends of the wire are at a distance of $\lambda / 2$. Thus in this situation (for fundamental oscillations) $\lambda=2 \mathrm{~L}$. The equation (3) can be written as

$$
f=\frac{1}{2 L} \sqrt{\frac{T}{\mu}}
$$

Now according to the question
Fundamental frequency
Mass of wire

$$
f=80 \mathrm{~Hz}
$$

$\mathrm{m}=5.0 \mathrm{~g}=0.005 \mathrm{~kg}$
Length of string $\quad \mathrm{L}=90 \mathrm{~cm}=0.9 \mathrm{~m}$
Hence mass per unit length of the string

$$
\mu=m / L=0.005 / 0.9=(1 / 180) \mathrm{kg} / \mathrm{m}
$$

Substituting data in above equation we get

$$
80=\frac{1}{2 * 0.9} \sqrt{\frac{T * 180}{1}}
$$

Nodes are the points of minimum amplitude

(stationary points) and
the distance between
two nearest nodes is also $\lambda / 2$.

Gives $\sqrt{180 T}=80 * 2 * 0.9$
Or $\quad \sqrt{180 T}=144$
Squaring both sides, we get the tension in the string as

$$
T=144^{2} * \frac{5}{900}=115.2 N
$$

As this tension is due to the weight of the hanging mass M we get

$$
M g=T=115.2
$$

Or

$$
M=115.2 / 9.8=11.76 \mathrm{~kg}
$$

